35Pt Chapter 15 test Molarity Problems

	Name:	
10	Section:	
<u>C</u>	 Which solution contains the solute? A) 0.5 L of 2 M C) 2 L of 2 M 	greatest number of moles of B) 2 L of 0.5 M D) 0.5 L of 0.5 M
D	2. What is the total number of 500. milliliters of 1 M CH ₃ CA) 60. g B) 90. g	COOH (formula mass = 60.)?
D)3. In the reaction Al ³⁺ + 6H ₂ O is undergoing the process ca A) neutralization C) addition	
A	4. What is the molarity of a so of KOH in 2.00 liters of sol A) 1.00 M B) 4.00 M	ution?
D	5. What is the total number of mass = 74.6) in 1.00 liter o A) 7.46 g B) 29.8 g	f 0.200 motar solution?
C		lution of KNO ₃ (molecular 4 grams of KNO ₃ in 2.00 liters
íV	of solution? A) 0.500 B) 4.00	
H	7. A solution in which an equil and undissolved solute mustA) saturatedC) dilute	be B) concentrated D) unsaturated
B	8. How many grams of ammonium c mass = 53.5 g) are contained solution? A) 107 g B) 53.5 g	hloride (gram formula in 0.500 L of a 2.00 M C) 26.5 g D) 10.0 g
B	9. How many grams of KOH are ne 250. milliliters of a 2.00 M mass = 56.0)?	eded to prepare solution of KOH (formula

D) 1.00

C) 112

B) 28.0

A) 2.00

15-2 Practice Problems

Molarity & molality

- 1. What is the molarity of the solution produced when 145 g of sodium chloride (NaCl) is dissolved in sufficient water to prepare 2.75 L of solution?
- 7. What is the molarity of the solution produced when 14.1 g of ammonia (NH₃) is dissolved in sufficient water to prepare 0.100 L of solution?
- 2. How many grams of potassium chloride (KCl) are needed to prepare 0.750 L of a 1.50 M solution of potassium chloride in water?
- 8. To prepare 10.5 L of a 2.50 M solution of potassium hydroxide (KOH), how many grams of potassium hydroxide must be used?
- 3. What is the molarity of the solution produced when 85.6 g of hydrochloric acid (HCl) is dissolved in sufficient water to prepare 0.385 L of solution?
- 9. What is the molality of a solution containing 75.2 g of silver perchlorate (AgClO₄) dissolved in 885 g of benzene?

4. To produce 3.00 L of a 1.90 M solution of sodium hydroxide (NaOH), how many grams of sodium hydroxide must be dissolved?

- 10. What is the molality of a solid solution containing 0.125 g of chromium and 81.3 g of iron?
- 5. If 8.77 g of potassium iodide (KI) are dissolved in sufficient water to make 4.75 L of solution, what is the molarity of the solution?
- 11. If 18.6 g of methanol is used to dissolve 2.68 g of Hg(CN)₂, what is the molality of the solution?

- 6. In order to prepare 2.00 L of a 3.00 M solution of ferric chloride (FeCl₃), how many grams of ferric chloride must be used?
- 12. What is the molality of solid solder wire if it is made from 68.7 g of lead dissolved in 117 g of tin?

SOLUBILITY CURVES

Name _____

Answer the following questions based on the solubility curve below.

- 1. Which salt is least soluble in water at 20° C?
- 2. How many grams of potassium chloride can be dissolved in 200 g of water at 80° C?
- 3. At 40° C, how much potassium nitrate can be dissolved in 300 g of water?
- 4. Which salt shows the least change in solubility from 0° 100° C?
- 5. At 30° C, 90 g of sodium nitrate is dissolved in 100 g of water. Is this solution saturated, unsaturated or supersaturated?

- 6. A saturated solution of potassium chlorate is formed from one hundred grams of water. If the saturated solution is cooled from 80° C to 50° C, how many grams of precipitate are formed?
- 7. What compound shows a decrease in solubility from 0° to 100° C? ______
- 8. Which salt is most soluble at 10° C? _____
- 9. Which salt is least soluble at 50° C?
- 10. Which salt is least soluble at 90° C?

185 2 1340N

10. In the reaction $Al^{3+} + 6H_{20} \longrightarrow Al(H_{20})_{6}^{3+}$, the Al^{3+}

is undergoing the process called

B) addition

A) hydrogenation C) neutralization

D) hydration

Study the solubility curves in the figure, and then answer the questions that follow.

- 1. What relationship exists between solubility and temperature for most of the substances shown?
- 2.a. What is the exception?
- b. What general principle accounts for this exception?
- 3.a. Approximately how many grams of NaNO3 will dissolve in 100 g of water at 20°C?
 - **b.** How many grams will dissolve at 60°C?
- 4. How many grams of NH₄Cl will dissolve in 1 Litte of H2O at 50°C?
- 5. Ninety grams of NaNO3 is added to 100 g of H2O at 0°C. With constant stirring, to what temperature must the solution be raised to produce a saturated solution with no solid NaNO3 remaining?
- 6. A saturated solution of KClO₃ was made with 300 g of H₂O at 40°C. How much KClO₃ could be recovered by evaporating the solution to dryness?
- 7. Five hundred grams of water is used to make a saturated solution of KCl at 10°C. How many more grams of KCl could be dissolved if the temperature were raised to 100°C?
- 8. A saturated solution of KNO3 in 200 g of H2O at 50°C is cooled to 20°C. How much KNO3 will precipitate out of solution?

1.		 	

- 5.
- 6. 7.
- 8.

d							
\sim (1	l) +1.86°C (2) -1.86°C	• ,	(4) +3.72°C	o		A 1 kilogram sample of water will have the highest freezing point when it contains
~ 1	It is ionic and	lowers the freezi	and sidewalks in t ing point of water.	he winter?			(1) 1×10^{17} dissolved particles (2) 1×10^{19} dissolved particles
19	 It is ionic and It is covalent a It is covalent a 	nd lowers the fr	eczing point of water. eczing point of water	ter. er.			(3) 1×10^{21} dissolved particles (4) 1×10^{23} dissolved particles
9 1	low are the boiling	and freezing po	oints of a sample of	water affected	when salt is	s 8.)	Compared to the normal freezing point and boiling point of water a 1-molal solution of sugar in water will have a
	The boiling po	int decreases an	d the freezing point d the freezing point d the freezing point	nt increases.			(1) higher freezing point and a lower boiling point
(4	i) The boiling po	oint increases and	d the freezing poir point and boiling	it increases.	er, a l-mola	ı	 (2) higher freezing point and a higher boiling point (3) lower freezing point and a lower boiling point (4) lower freezing point and a higher boiling point
. · · · · · · ·	olution of sugar II 1) higher freezin	i water will have g point and a loi	a wer boiling point			ر و	Which ratio of solute-to-solvent could be used to prepare :
(:	3) lower freezing	wol a dra aniog	gher boiling point er boiling point her boiling point			-1	solution with the highest boiling point?
	•	taining 1 mole o	of solute dissolved	in 1,000 grams	of water ha	S	(1) 1 g of NaCl dissolved per 100 g of water (2) 1 g of NaCl dissolved per 1000 g of water
(1) KOH(aq) 2) C ₆ H ₁₂ O ₆ (aq)		(3) C ₂ H ₃ OH(aq) (4) C ₁₂ H ₁₂ O ₁₁ (aq)			 (3) 1 g of C₁₂H₂₂O₁₁ dissolved per 100 g of water (4) 1 g of C₁₂H₂₂O₁₁ dissolved per 1000 g of water
1 / /	Which solution is (1) 1 mole of solu	ite dissolved in L	HIET OF SOULDON		ı	(10.)	Which expression defines the molality (m) of a solution?
	/9\ 5 m n les 01 50 l	nne aksorvea m	3 liters of solution 4 liters of solution 8 liters of solution				grams of solute moles of solute (2)
21)	A solution in whic	h the crystallizing	rate of the solute	equals the diss	olving rate	of	kg of solution (2) kg of solution
_	the solute must be (1) saturated	-	(3) concentrates (4) dilute	d			grams of solute moles of solute
-00a	(2) unsaturated According to Ref	erence Table 🚭	approximately ho	w many grams	of KClO ₃ as	re	(3) kg of solvent (4) kg of solvent
ヘノ	needed to saturat	e 100 grams of F (2) 16	1.0 at 40°C? (3) 38	(4) 47		11.)	A student dissolves 1.0 mole of sucrose (C ₁₂ H ₂₂ O ₁₁) in 1,00
98		rence Table 👸 a solubility of	temperature chan		90°C has th	he	grams of water at 1.0 atmosphere. Compared to the boiling poir of pure water, the boiling point of the resulting solution is
- ^	(1) SO ₂	(2) NO ₃	(3) KCl , which compoun	(4) KClO _s d's solubility d	ecreases mo	ost	(1) 0.52 C° lower (2) 1.86 C° lower (3) 0.52 C° hight (4) 1.86 C° higher
24.	rapidly when the (1) NH,	temperature ind (2) HCl	reases from 50°C (3) SO ₂	to 70°C? (4) KNO ₃		(1	How many grams of ammonium chloride (gram formula mas.
25.	Based on Referen	ice Table E, whic	th of the following	saturated solut	tions would	be .	33.3 g) are contained in 0.500 L of a 2.00 M solution?
	the least concentr (1) sodium sulfa (2) potassium su	ateur Tateur	(3) copper (II) (4) barium suli	sulfate			(1) 10.0 g (2) 26.5 g (3) 53.5 g (4) 107 g
72 6.	What is the con-	centration of a sc	olution of 10 mole	s of copper (II)) nitrate in !	5.0	What is the molarity of an H_2SO_4 solution if 0.25 liter of solution contains 0.75 mole of H_2SO_4 ?
* _{**} .	liters of solution (1) 0.50 M	(2) 2.0 M	(3) 5.0 M	(4) 10 M	0 V	0 A	(1) 0.33 M (2) 0.75 M, (3) 3.0 M (4) 6.0 M
27.	What is the total M solution of H. (1) 2.5	number of mole SO ₄ ? (2) 5.0	es of H ₂ SO ₄ neede (3) 10	(4) 20	O liters of a	ž.0 3	What is the total number of grams of NaOH (formula mass = needed to make 1.0 liter of a 0.20 M solution?
 728.			olution containing	116 grams of	KF in 1.00 l	iter	(1) 20. g (2) 2.0 g (3) 80. g (4) 8.0 g
,,,,,	of solution? (1) 1.00 M	(2) 2.00 M	(3) 3.00 M	(4) 4.00 M			As additional KNO ₃ (s) is added to a saturated solution of Kl
1,	When ethylene	e glycol (an ant	ifreeze) is added	to water, the	boiling po	int	at constant temperature, the concentration of the solution
•	of the water (1) decreases,	and the freezing	ng point decrease	es			(1) decreases (2) increases (3) remains the same
	(3) increases.	and the freezin	ng point increase ng point decrease ng point increase	:5		0	What is the total number of grams of KCl (formula mass = 7 in 1.00 liter of 0.200 molar solution?
2.	How many m	oles of a nonvo	latile, nonelectro	olyte solute ar	re required	l to	(1) 7.46 g (2) 14.9 g (3) 22.4 g (4) 29.8 g
iower the freezing point of 1,000		,000 grams of wa (3) 3	grams of water by 5.58°C?			of 0.50 liter of a 12-molar solution is diluted to 1.0 liter molarity of the new solution is (1) 2.4 (2) 6.0 (3) 12 (4)	
3.	A 0.100-molal	aqueous solutio	on of which comp	ound has the	lowest freez	zing	F 12 (4)
	(1) C.H.,O.	(2) CH ₃ OH	(3) C ₁₂ H ₂₂ O ₁	(4) NaOH	H		
	*	Table D is	Now Table	Gi *			. ~ 1
	NAME		Now Table				SOLUTIONS!

QUESTIONS

- 1. How many moles of H₂SO₄ are needed to prepare 5 L of a 2.0 M solution of H₂SO₄? (1) 2.5 moles (2) 5.0 moles (3) 10 moles (4) 20 moles
- 2. What is the mass of KCl in 1.0 L of 0.2 M solution? (1) 7.46 g (2) 14.9 g (3) 22.4 g (4) 29.8 g
- 3. What is the molarity of a solution that contains 20 g CaBr₂ in 0.50 L of solution? (1) 0.50 M (2) 2.0 M (3) 0.10 M (4) 0.20 M
- 4. What is the mass of solute in 500 mL of 1.0 M CH₃COOH? (1) 30 g (2) 60 g (3) 90 g (4) 120 g
- 5. What is the molarity of a solution that contains 10 g of NaOH in 500 mL of solution? (1) 1.0 M (2) 0.50 M (3) 0.25 M (4) 0.10 M
- 6. How many moles of AgNO3 are found in 500 mL of a 5.0 M solution of AgNO₃? (1) 2.5 moles 5.0 moles (3) 10 moles (4) 170 moles
- 7. What is the molarity of a solution that contains 80 g of NaOH in 4.0 liters of solution? (1) 0.50 M (2) 2.0 M (3) 8.0 M (4) 20.0 M
- 8. If 0.50 liter of a 12 M solution is diluted to 1.0 liter,
- what is the molarity of the new solution? (1) 2.4 M (2) 6.0 M (3) 12.0 M (4) 24.0 M
- 9. What is the molarity of a solution of KNO3 (molecular mass = 101) that contains 404 grams of KNO3 in 2.0 liters of solution? (1) 1.0 (2) 2.0 (3) 0.50 (4) 4.0
- 10. A 5% solution of potassium chloride contains 5 grams of solid dissolved in a quantity of water that is equal to (1) 100 grams (2) 100 moles (3) 95 grams (4) 95 moles
- II. In 10 grams of a 5% salt solution, the mass of salt is (1) 0.5 gram (2) 0.2 gram (3) 95 grams (4) 9.5 grams

The Mathematics of Chemistry

* QUESTIONS

I. Compared to pure water, a 1.0 m solution of NaCl will have a

- (1) higher boiling point and a higher freezing point
- (2) higher boiling point and a lower freezing point
- (3) lower boiling point and a higher freezing point (4) lower boiling point and a lower freezing point
- 2. Which 0.1 molal solution has the lowest freezing point? (1) $C_6H_{12}O_6$ (2) $(NH_4)_2SO_4$ (3) KBr (4) CuSO₄
- 3. Which 0.1 molal solution has the highest freezing point? (1) $C_6H_{12}O_6$ (2) $(NH_4)_2SO_4$ (3) KB_r (4) CuSO₄
- 4. A I-kilogram sample of water will have the highest freezing point when it contains (1) 1×10^{17} dissolved particles (2) 1×10^{19} dissolved particles (3) $1 \times$ 10^{21} dissolved particles (4) 1 \times 10^{23} dissolved particles
- 5. Which solution will freeze at the lowest temperature? (1) 1 mole of sugar in 500 g of water (2) 1 mole of sugar in 1,000 g of water (3) 2 moles of sugar in 500 g of water (4) 2 moles of sugar in 1,000 g of water

QUESTIONS

- 1. How many grams of ammonium chloride (gram formula mass = 53.5 g) are contained in 0.500 L of a 2.00 M solution?
 - (1) 10.0 g (2) 26.5 g (3) 53.5 g (4) 107 g
- What is the molarity of an H₂SO₄ solution if 0.25 liter of the solution contains 0.75 mole of H₂SO₄?
 - (1) 0.33 M (2) 0.75 M (3) 3.0 M (4) 6.0 M
- 3. What is the total number of grams of NaOH (formula mass = 40.) needed to make 1.0 liter of a 0.20 M solution?
 - (1) 20, g (2) 2.0 g (3) 80, g (4) 8.0 g
- As additional KNO₃(s) is added to a saturated solution of KNO₃ at constant temperature, the concentration of the solution
 - (1) decreases (2) increases (3) remains the same
- 5. What is the total number of grams of KCl (formula mass = 74.6) in 1.00 liter of 0.200 molar solution?
 - (1) 7.46 g (2) 14.9 g (3) 22.4 g (4) 29.8 g
- If 0.50 liter of a 12-molar solution is diluted to 1.0 liter, the molarity of the new solution is (1) 2.4 (2) 6.0 (3) 12 (4) 24

2	How many grams	f KOH are need	ed to prepare 25	0. milliliters of a		is name of the solid that forms when silver nitrate is h sodium chloride? (1) silver nitrate (2) silver
	2.00 M solution of E (1) 1.00		ass = 56.0)? (3) 28.0	(4) 112		(3) sodium chloride (4) sodium nitrate
-	What is the maxim		• •		E. According	to Reference Table E, which of the following compounds
(20	200 grams of water	at 70°C?		HE WITH GIBOUTE III	would mo	st likely have the smallest K? (1) barium chioride
			(3) 100	(4) 120		m sulfate (3) magnesium nitrate (4) silver acetate
12	A solution in which	an equilibrium	exists between d	lissolved and	E-3. Based on	Reference Table which of the following compounds is soluble in water? (1) AgI (2) AgCl (3) PbCl ₁
C	undissolved solute	nust be 2) unsaturated		(4) concentrated	(4) Pb(N	
.0	Which solution con			* *	(T) What is the	molarity of a solution that contains 4 grams of NaOH in 50
150	(1) 0.5 L of 0.5 M (2) 0.5 L of 2 M	-	(3) 2 L of 0.5 M (4) 2 L of 2 M		milliliters of	solution? (Formula mass of NaOH = 40) (1) 0.1 M 0.2 M (4) 0.5 M
. 2	Which quantity of a	alt will form a s	aturated solutio	n in 100 grams of		molarity of a solution that contains 28 grams of KOH
· .	water at 45°C?		/0\ 00 = -6 T/2\(\)		(formula ma	ass = 56) in 2.0 liters of solution? (1) 1.0 M (2) 2.0 M
	(1) 30 g of KCl		(3) 60 g of KNO(4) 110 g of Nai		(3) 0.25 M	
_	(2) 35 g of NH ₄ Cl			•		centimeters of 2.0 M HCi is diluted with H ₂ O to a volume of centimeters, the molarity of the new solution will be
(2	7 How many grams of are contained in 0.1	f ammonium chl	loride (gram for:	mula mass = $53.5 g$)		(2) 2.0 M (3) 0.25 M (4) 0.50 M
`			(3) 53.5 g	(4) 107 g		moles of KNO2 are required to make 0.50 liter of a 2.0
	(2) 2012 8	•	,	_	solution of	KNO ₃ ? (1) 1.0 (2) 2.0 (3) 0.50 (4) 4.0
	Extended material gram molecular N on the solvent; the freezing point de	nass from gas d vhich includes i	ensity, colligati molality, bolling	ve effects of solute i point elevation.	nonelectroly (2) 0.520° C	refreezing point of a solution that contains 1.00 mole of a yte dissolved in 1 000 grams of water? (1) 0.00° C (3) -1.86° C (4) -3.72° C
2	8 Which of the follow $/$ (1) SO ₂		ie greatest densi (3) Cl ₂	ity at STP? (4) N ₂	CaCl ₂ (2)	er solution will have the lowest freezing point? (1) 1 mo 1 molal NaCl (3) 1 molal $C_{12}H_{22}O_{11}$ (4) 2 molal $C_6H_{12}O_{12}$
9	, , , ,	_	_		3. Walcu I me	olal solution will have the highest boiling point? (1) KAIC
2	What is the empiring 50.% sulfur and	50.% oxvgen?	compound whos	e composition by m.	(a) Mg(HO	$3/2 (3) AU(NO_3)_3 (4) NH_2NO_3$
	(1) SO	(2) SO ₂	(3) SO ₃	(4) S ₂ O ₃	(4.) NaOH is ad	ded to one beaker of distilled water, and C2H5OH is added
ą	The density of a ga	s is 3.00 grams/	Liter at STP. W	hat is the gram	WHOCHET THES	ther of distilled water. Both of the enlutions that a
	molecular mass of	the gas?		_	lower boili	estrong electrolytes (2) turn litmus paper blue (3) have ng point than pure water (4) have a lower freezing point
and t	(-)		(3) 22.4 g	(4) 67.2 g	man pare 1	M STATE TO STATE OF THE STATE O
(3	Which solution has	the highest boil	ling point?	•	5. At standard	d pressure, a molal solution of sugar has a boiling poin
000	(1) 1 mole of NaN((2) 1 mole of NaN(Dain 200 g of we	iter		/~/ Promper	MAN TAL MILLELLING BOIST SECOND AL ACC
	(3) 1 mole of NaN	On in 750 g of wa	ter :ter		Promise PHA	n 100°C and a freezing point less than 0°C (3) less than freezing point greater than 0°C (4) less than 100°C a
	(4) 1 mole of NaN	On in 1000 g of w	vater		. PARTICIAL I	VOLUL LESS LOSIN D'L.
					According	to Reference Table L. which A I molel colonian with
	How many grams	of KNO ₃ are no	eded to saturat	e 50.0 grams of wat	Am at 10 404 .	freezing point? HNO ₂ (3) HNO ₃ (4) CH ₃ COOH
	70°C? (1) 30. g	(2) 65 g	(3) 130. g	(4) 160, g	D-1. A solution	on tring 90 moves of a call district the care
;	2 How many gram	of NaNOs per 1	100 grams of H	O would produce a	METCL ST	on contains 90 grams of a salt dissolved in 100 grams of 40°C. The solution could be an unsaturated solution
	supersaturated s	olution?			or (1)	ACI (2) ANO ₃ (3) NaCl (4) NaNO ₃
	(1) 110. g at 40°	3	(3) 80. g at 20	O°C	(D-Z.)Based or	Reference Table 1 which of the following substances
	(2) 90. g at 30°C (3) As additional KN	O2(a) is added t	(4) 60. g at 10 o a saturated so	lution of KNO3 at	magar ant	unic at on, C; (1) MH(Ci (2) KCi (3) NaCi
	constant tempera				(4) NaN	
	(1) decreases	(2) increases	(3) remains t	he same	80°C. Th	on contains 52 grams of solute per 100 grams of water s is solution could be a saturated solution of (1) NaCl
1	As additional sol	id KCl is added	to a saturated so	olution of KCl, the	(2) NaN	O ₃ (3) KCl (4) KClO ₃
	conductivity of the	(2) increases	(3) remains t	he same ·	P-4. Which t	wo salts are equally soluble in 100 ml of Han at 76°C2
	5 Based on Referen	ice Table 🥒, whi	ich of the followi	ng substances is m	380	A and Acto; (2) Naci and ACI (3) NanO, and Ki
	soluble at 60°C?	(9) V(1	(9) N-(1)	(4) BILI	(4) ACI	and KinOj
	(1) NH ₄ Cl	(2) KCl	(3) NaCl	(4) NH ₃	U-5 Given 10	00 mL of water at 10°C that contains 60 grams of NaN(
-	- 10 S - Al-	Table C	- M		SUSTANA O	to form a saturated solution at 10°C, how many more
	Table D is Nov	a labor a	7 *			f NaNO ₃ must be added? (1) 19 (2) 38 (3) 60 (4
					(12)	Which solute, when added to 1,000 grams of water, will pro-
						solution with the highest boiling point?
	9 When sodium	chloride is di	ssolved in wat	ter, the resulting	solution is	(1) 29 g of NaCl (2) 58 g of NaCl
	classified as a				_	(3) 31 g of $C_2H_4O_2$ (4) 62 g of $C_2H_4O_3$
	(1) heterogene	ous compoun	d (3) heterog	eneous mixture	(13.)	What occurs as a salt dissolves in water?
	(2) homogene	ous compound	r (4) nomoge	eneous mixture		(1) The number of ions in the solution decreases, and the i
	in a ser B	eference Tabl	e 6 , which con	npound's solubili	ty decreases	point decreases.
	- IU. IACOTOING IO P				15	(2) The number of ions in the solution decreases and the
	most rapidly a	s the temperat	ure changes fr	com 10 °C to 70 °C		(2) The number of ions in the solution decreases, and the
	most rapidly a (1) NH ₄ Cl	s the temperat (2) NH ₃	ture changes fr (3) HCl	om 10°C to 70°C (4) KCl	••	point increases.
	most rapidly a (1) NH ₄ Cl	s the temperat (2) NH ₃	ure changes fr (3) HCl	(4) KCl		point increases. (3) The number of ions in the solution increases, and the
	most rapidly a (1) NH ₄ Cl (1) Based on Refe	s the temperat (2) NH ₃ crence Table E	ture changes fr (3) HCl , which of the	(4) KCl		point increases. (3) The number of ions in the solution increases, and the point decreases.
	most rapidly a (1) NH ₄ Cl 11) Based on Reference to the left (1) sodium su	s the temperat (2) NH ₃ crence Table E east concentrat lfate	ture changes fr (3) HC1 , which of the ted? (3) copper	(4) KCl following saturat : (II) sulfate		point increases. (3) The number of ions in the solution increases, and the point decreases. (4) The number of ions in the solution increases, and the
	most rapidly a (1) NH ₄ Cl 11) Based on Reference to the least of the	s the temperat (2) NH ₃ crence Table E east concentrat lfate	ture changes fr (3) HCl , which of the ted?	(4) KCl following saturat : (II) sulfate		point increases. (3) The number of ions in the solution increases, and the point decreases.

87

A 1 kilogram sample of water will have the highest freezing point when it contains

(1) 1×10^{17} dissolved particles (2) 1×10^{19} dissolved particles

(3) 1×10^{21} dissolved particles (4) 1×10^{23} dissolved particles

Compared to the normal freezing point and boiling point of water, a 1-molal solution of sugar in water will have a ණේ

(1) higher freezing point and a lower boiling point

(2) higher freezing point and a higher boiling point

(3) lower freezing point and a lower boiling point

(4) lower freezing point and a higher boiling point

Which ratio of solute-to-solvent could be used to prepare a solution with the highest boiling point? ₽,

(1) I g of NaCl dissolved per 100 g of water

(2) 1 g of NaCl dissolved per 1000 g of water

(4) 1 g of C₁₂H₂₂O₁₁ dissolved per 1000 g of water (3) 1 g of C₁₂H₂₂O₁₁ dissolved per 100 g of water

Which expression defines the molality (m) of a solution? 10

grams of solute kg of solution \equiv

moles of solute kg of solution (2)

> grams of solute kg of solvent 3

moles of solute kg of solvent 4

A student dissolves 1.0 mole of sucrose (C₁₂H₂₂O₁₁) in 1,000 grams of water at 1.0 atmosphere. Compared to the boiling point of pure water, the boiling point of the resulting solution is

(1) 0.52 C° lower (2) 1.86 C° lower (3) 0.52 C° higher (4) 1.86 C° higher

MATHEMATICS OF CHEMISTRY

Which solute, when added to 1,000 grams of water, will produce a solution with the highest boiling point? 12,

(3) 31 g of C₂H₆O₂ (1) 29 g of NaCl

(2) 58 g of NaCl (4) 62 g of C₂H₆O₂

What occurs as a salt dissolves in water?

3

(1) The number of ions in the solution decreases, and the freezing point decreases.

(2) The number of ions in the solution decreases, and the freezing point increases.

(3) The number of ions in the solution increases, and the freezing point decreases. (4) The number of ions in the solution increases, and the freezing point increases.